

Four Output Low Power Differential Fanout Buffer for PCI Express Gen1, Gen2, and QPI

9DBL411B

Recommended Application:

PCI-Express Gen2 or QPI fanout buffer

Output Features:

- 4 low power differential output pairs
- Individual OE# control of each output pair

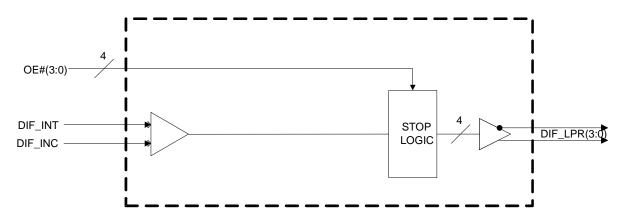
Key Specifications:

- Output cycle-cycle jitter < 15ps additive
- Output to output skew: < 50ps

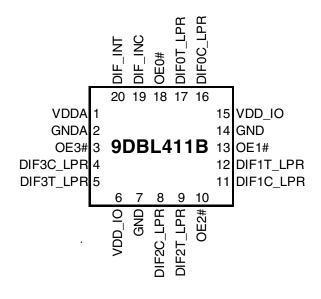
Features/Benefits:

- Low power differential outputs for PCI-Express and QPI clocks
- Power down mode when all OE# are high
- Available in I-temp
- 20-pin MLF or TSSOP packaging

General Description:


The **9DBL411B** is a 4 output lower power differential buffer. Each output has its own OE# pin. It has a maximum operating frequency of 150 MHz.

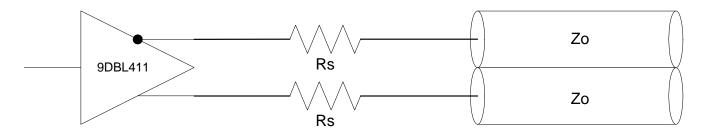
Power Groups


Pin Numl	per (TSSOP)	Description
VDD	GND	Description
9,18	10,17	VDD_IO for DIF(3:0)
4	5	3.3V Analog VDD & GND

Pin Number (MLF)		- Description	
VDD	GND	Description	
6,15	7,14	VDD_IO for DIF(3:0)	
1	2	3.3V Analog VDD & GND	

Functional Block Diagram

Pin Configurations



DIF_INC 2 19 DIF0C_LPR DIF_INT 3 18 VDD_IO VDDA 4 17 GND GNDA 5 16 OE1# OE3# 6 15 DIF1T_LPR DIF3C_LPR 7 14 DIF1C_LPR DIF3T_LPR 8 6 13 OE2#
VDDA 4 17 GND GNDA 5 16 OE1# OE3# 6 15 DIF1T_LPR DIF3C_LPR 7 14 DIF1C_LPR
OE3# 6 15 DIF1T_LPR DIF3C_LPR 7 14 DIF1C_LPR
OE3# 6 15 DIF1T_LPR DIF3C_LPR 7 14 DIF1C_LPR
DIF3C_LPR 7
DIF3C_LPR 7 14 DIF1C_LPR
VDD_IO 9 12 DIF2T_LPR
GND 10 11 DIF2C_LPR

20-pin MLF

20-pin TSSOP

Terminations

Zo-17=Rs (ohms), where Zo is the single-ended intrinsic impedance of the board transmission line. Single-ended intrinsic impedance is $\frac{1}{2}$ that of the differential impedance.

Single Ended	Rs		
Impedance	5%	Rs	
(Zo)	tolerance	2% tolerance	Notes
50	33	33.2	In general, 5% resistors
45	27	27.4	may be used. All values are
42.5	24 or 27	24.9	in ohms.

IDT® Four Output Low Power Differential Buffer for PCI Express for Gen1, Gen2, and QPI

TSSOP Pin Description

PIN # (TSSOP)	PIN NAME	PIN TYPE	DESCRIPTION	
-1	OE0#	IN	Output Enable for DIF0 output. Control is as follows:	
	OE0#	IIN	0 = enabled, 1 = Low-Low	
2	DIF_INC	IN	Complement side of differential input clock	
3	DIF_INT	IN	True side of differential input clock	
4	VDDA	PWR	3.3V Power for the Analog Core	
5	GNDA	GND	Ground for the Analog Core	
6	OE3#	IN	Output Enable for DIF3 output. Control is as follows:	
0	OL3#	IIN	0 = enabled, 1 = Low-Low	
7	DIF3C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)	
8	DIF3T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)	
9	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V	
10	GND	GND	Ground pin	
11	DIF2C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)	
12	DIF2T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)	
13	OE2#	IN	Output Enable for DIF2 output. Control is as follows:	
13	OE2#	IIN	0 = enabled, 1 = Low-Low	
14	DIF1C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)	
15	DIF1T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)	
16	16 OE1# IN		Output Enable for DIF1 output. Control is as follows:	
16 OE1# IN		IIN	0 = enabled, 1 = Low-Low	
17	GND	GND	Ground pin	
18	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V	
19	DIF0C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)	
20	DIF0T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)	

MLF Pin Description

PIN # (MLF)	PIN NAME	PIN TYPE	DESCRIPTION		
1	VDDA	PWR	3.3V Power for the Analog Core		
2	GNDA	GND	Ground for the Analog Core		
3	OE3#	IN	Output Enable for DIF3 output. Control is as follows: 0 = enabled, 1 = Low-Low		
4	DIF3C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)		
5	DIF3T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)		
6	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V		
7	GND	GND	Ground pin		
8	DIF2C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)		
9	DIF2T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)		
10	OE2#	IN	Output Enable for DIF2 output. Control is as follows: 0 = enabled, 1 = Low-Low		
11	DIF1C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)		
12	DIF1T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)		
13	OE1#	IN	Output Enable for DIF1 output. Control is as follows: 0 = enabled, 1 = Low-Low		
14	GND	GND	Ground pin		
15	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V		
16	DIF0C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)		
17	DIF0T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)		
18	OE0#	IN	Output Enable for DIF0 output. Control is as follows: 0 = enabled, 1 = Low-Low		
19	DIF_INC	IN	Complement side of differential input clock		
20	DIF_INT	IN	True side of differential input clock		

Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Maximum Supply Voltage	VDDA	Core Supply Voltage		4.6	V	1,7
Maximum Supply Voltage	VDD_IO	Low-Voltage Differential I/O Supply	0.99	3.8	V	1,7
Maximum Input Voltage	V _{IH}	3.3V LVCMOS Inputs		4.6	V	1,7,8
Minimum Input Voltage	V _{IL}	Any Input	Vss - 0.5		٧	1,7
Ambient Operating Temp	TambCOM	Commercial Range	0	70	°C	1
Ambient Operating Femp	TambIND	Industrial Range	-40	85	°C	1
Storage Temperature	Ts	-	-65	150	°C	1,7
Input ESD protection	ESD prot	Human Body Model	2000		V	1,7

Electrical Characteristics - Input/Supply/Common Output Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Supply Voltage	VDDxxx	Supply Voltage	3.000	3.600	V	1
Supply Voltage	VDDxxx_IO	Low-Voltage Differential I/O Supply	0.99	3.600	V	1
Input High Voltage	V _{IHSE}	Single-ended inputs	2	$V_{DD} + 0.3$	V	1
Input Low Voltage	V_{ILSE}	Single-ended inputs	V _{SS} - 0.3	0.8	٧	1
Differential Input High Voltage	V _{IHDIF}	Differential inputs (single-ended measurement)	600	1.15	V	1
Differential Input Low Voltage	V_{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 0.3	300	٧	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4	8	V/ns	2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}, V_{IN} = GND$	-5	5	uA	1
Operating Supply Current	I _{DD_3.3V}	VDDA supply current		20	mA	1
Operating Supply Surrent	I _{DD_IO_133M}	VDD_IO supply @ fOP = 133MHz		20	mA	1
Power Down Current	I _{DD_SB_3.3V}	VDDA supply current, Input stopped, OE# pins all high		750	uA	1
(All OE# pins High)	I _{DD_SBIO}	VDD_IO supply, Input stopped, OE# pins all high		150	uA	1
Input Frequency	F _i	$V_{DD} = 3.3 \text{ V}$	15	150	MHz	2
Pin Inductance	L_{pin}			7	nΗ	1
Input Capacitance	C_{IN}	Logic Inputs	1.5	5	pF	1
три Оараскансе	C _{OUT}	Output pin capacitance		6	pF	1
OE# latency (at least one OE# is low)	$T_{OE\#LAT}$	Number of clocks to enable or disable output from assertion/deassertion of OE#	1	3	periods	1
Clock stabilization time (from all OE# high to first OE# low).	T _{STAB}	Delay from assertion of first OE# to first clock out (assumes input clock running)		150	ns	1
Tdrive_OE#	T _{DROE#}	Output enable after OE# de-assertion		10	ns	1
Tfall_OE#	T_{FALL}	Fall/rise time of OE# inputs		5	ns	1
Trise_OE#	T_{RISE}	. am noo am on o z mapato		5	ns	1

AC Electrical Characteristics - DIF Low Power Differential Outputs

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	NOTES
Rising Edge Slew Rate	t _{slR}	Differential Measurement	1.5	4	V/ns	1,2
Falling Edge Slew Rate	t _{FLR}	Differential Measurement	1.5	4	V/ns	1,2
Slew Rate Variation	t _{slvar}	Single-ended Measurement		20	%	1
Maximum Output Voltage	V_{HIGH}	Includes overshoot		1150	mV	1
Minimum Output Voltage	V_{LOW}	Includes undershoot	-300		mV	1
Differential Voltage Swing	V _{SWING}	Differential Measurement	1200		mV	1
Crossing Point Voltage	V _{XABS}	Single-ended Measurement	300	550	mV	1,3,4
Crossing Point Variation	V _{XABSVAR}	Single-ended Measurement		140	mV	1,3,5
Duty Cycle Distortion	D _{CYCDIS0}	Differential Measurement, fIN<=133.33MHz		3	%	1,6
Additive Cycle to Cycle Jitter	DIFJ _{C2CADD}	Differential Measurement, Additive		15	ps	1
DIF[3:0] Skew	DIF _{SKEW}	Differential Measurement		50	ps	1
Propagation Delay	t _{PD}	Input to output Delay	2.5	3.5	ns	1
Additive Phase Jitter - PCIe Gen1	t phase_addPClG1	1.5MHz < 22MHz		6	ps Pk-Pk	1,9
Additive Phase Jitter - PCIe Gen2 High Band	t _{phase_addPClG2Hl}	High Band is 1.5MHz to Nyquist (50MHz)		0.16	ps rms	1,9
Additive Phase Jitter PCle Gen2 Low Band	t _{phase_addPCIG2LO}	Low Band is 10KHz to 1.5MHz		0.07	ps rms	1,9
Additive Phase Jitter QPI133 (6.4GBs, 12 UI)	t _{phase_addQPI6G4}	11MHz to 33MHz		0.04	ps rms	1,9

Notes on Electrical Characteristics (all measurements use 9LRS3187B as clock source and R_S=33ohms/C_L=2pF test load):

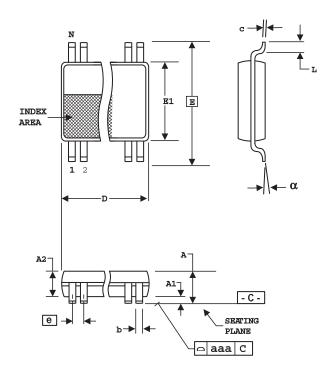
¹Guaranteed by design and characterization, not 100% tested in production.

² Slew rate measured through Vswing centered around differential zero

³ Vxabs is defined as the voltage where CLK = CLK#

⁴ Only applies to the differential rising edge (CLK rising and CLK# falling)

⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK and falling edge of CLK#. It is measured using a +/-75mV window centered on the average cross point where CLK meets CLK#.


⁶ This figure refers to the maximum distortion of the input wave form.

⁷ Operation under these conditions is neither implied, nor guaranteed.

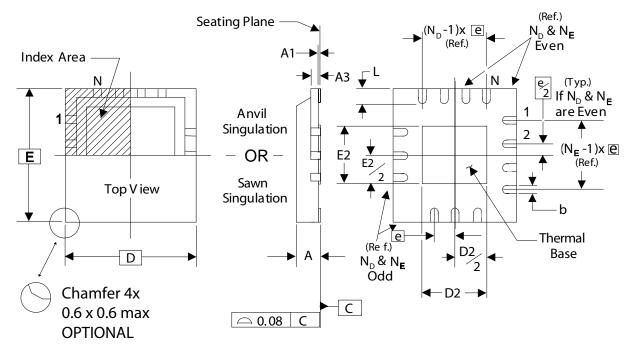
⁸ Maximum input voltage is not to exceed maximum VDD

⁹ The 9DBL411B has no PLL, so the part itself contributes very little jitter to the input clock. But this also means that the 9DBL411 cannot 'de-jitter' a noisy input clock. Values calculated per PCI SIG and per Intel Clock Jitter tool version 1.5

20-pin TSSOP Package Drawing and Dimensions

20-Lead, 4.40 mm. Body, 0.65 mm. Pitch TSSOP (173 mil) (25.6 mil)

	(17	3 IIIII <i>)</i>	(25.6 11111)		
	In Milli	meters	In Inches		
SYMBOL	COMMON D	IMENSIONS	COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.19	0.30	.007	.012	
С	0.09	0.20	.0035	.008	
D	SEE VAF	SEE VARIATIONS		SEE VARIATIONS	
E	6.40 E	BASIC	0.252 BASIC		
E1	4.30	4.50	.169	.177	
е	0.65 BASIC		0.0256 BASIC		
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VAF	RIATIONS	
а	0°	8°	0°	8°	
aaa		0.10		.004	


VARIATIONS

N	D n	nm.	D (inch)	
IN	MIN	MAX	MIN	MAX
20	6.40	6.60	.252	.260

Reference Doc.: JEDEC Publication 95, MO-153

10-0035

20-pin MLF Package Drawing and Dimensions

THERMALLY ENHANCED, VERY THIN, FINE PITCH QUAD FLAT / NO LEAD PLASTIC PACKAGE

DIMENSIONS

SYMBOL	MIN.	MAX.	
Α	0.8	1.0	
A1	0	0.05	
A3	0.20 Reference		
b	0.18	0.3	
е	0.50 BASIC		

DIMENSIONS

SYMBOL	ICS 20L TOLERANCE	
N	20	
N_D	5	
N _E	5	
D x E BASIC	4.00 x 4.00	
D2 MIN. / MAX.	2.00 / 2.25	
E2 MIN. / MAX.	2.00 / 2.25	
L MIN. / MAX.	0.45 / 0.65	

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DBL411BKLF	Tubes	20-pin MLF	0 to +70°C
9DBL411BKLFT	Tape and Reel	20-pin MLF	0 to +70°C
9DBL411BGLF	Tubes	20-pin TSSOP	0 to +70°C
9DBL411BGLFT	Tape and Reel	20-pin TSSOP	0 to +70°C
9DBL411BKILF	Tubes	20-pin MLF	-40 to +85°C
9DBL411BKILFT	Tape and Reel	20-pin MLF	-40 to +85°C
9DBL411BGILF	Tubes	20-pin TSSOP	-40 to +85°C
9DBL411BGILFT	Tape and Reel	20-pin TSSOP	-40 to +85°C

[&]quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

[&]quot;B" is the device revision designator (will not correlate to the datasheet revision).

Revision History

Rev.	Issue Date	Description	Page #
0.1 1/8/20		Initial Release. Compared with A rev the following have changed:	
	1/9/2010	1. Added I-temp version	
		2. Updated electrical tables for I-temp	
		3. Revised Phase Jitter specs and added QPI.	
Α	1/8/2010	Released to final.	
В	4/23/2010	Changed Input Frequency from 33 min to 15 MHz min	5
С	10/18/2010	Updated Supply Voltage min/max ratings.	5

This product is protected by United States Patent NO. 7, 342, 420 and other patents.

Innovate with IDT and accelerate your future networks. Contact:

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

408-284-6578 pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

IDT Singapore Pte. Ltd. 1 Kallang Sector #07-01/06 KolamAyer Industrial Park Singapore 349276 Phone: 65-6-744-3356 Fax: 65-6-744-1764

ng Sector #07-01/06 321 Ki

IDT Europe Limited 321 Kingston Road Leatherhead, Surrey KT22 7TU England Phone: 44-1372-363339 Fax: 44-1372-378851

Europe

© 2010 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, ICS, and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners.

Printed in USA

IDT® Four Output Low Power Differential Buffer for PCI Express for Gen1, Gen2, and QPI

1645C-10/18/10